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Hexazirconium- and Hexahafnium-Containing Tungstoarsenates(III) and
Their Oxidation Catalysis Properties

Ghada Al-Kadamany,"” Sib Sankar Mal,' <! Borislav Milev,""! Baira G. Donoeva,™
Raisa I. Maksimovskaya,” Oxana A. Kholdeeva,*" and Ulrich Kortz*!

Exploring the interaction of lacunary polyoxometalates
(POMs) with Group 4 (Ti, Zr, and Hf) transition-metal ions
has been mainly driven by the fact that potential products
may serve as oxidation catalysts or even as soluble molecu-
lar analogues of known Ti- and Zr-containing heterogeneous
catalysts.! Bearing in mind that zirconium(IV) and hafni-
um(IV) can have larger coordination numbers than titani-
um(IV), the chemistry of the former pair compared to the
lighter congener is expected to be different, leading to dif-
ferent structural assemblies. There are significantly fewer re-
ports on Zr/Hf-POMs than Ti-POMs in the literature, and
the former can be classified according to the composing la-
cunary POM fragments as follows: Keggin type
([PW 03], [SiW;,05]*, [GeW;,05]*, [B-SiW04]'"",
[y-SiW 05", [PWoO05]"~, and [SiW,05,]""),”) Wells—
Dawson type ([0,-P,W;04]"", [a-P,W05]"", and [a-
P,W,505]**"),’) and Lindqvist type ([Ws05]*7)." Our group
has reported the first two examples of peroxo-Zr/Hf poly-
anions.”™ In addition, the unique, asymmetric structure
[Zry(u-OH)(H,0),(AsOH),(AsW0,5) (AsW1i03) ]~ has
been obtained from the reaction of [NaAs™,W 0]~ with
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Zr" ions, and does not belong to any of the above-men-
tioned classes."’

Whereas the reactivity of the ‘classical’ trilacunary Keggin
ions [PW,05,]° and [SiW,04,]"" with Ti"V, Zr", and Hf"Y
ions is fairly well understood (vide supra), this is not the
case for the lone pair containing Keggin family
[X™W,05]°~ (X=As, Sb, Bi), which displays different
chemical reactivity and consequently results in structurally
distinct products.”®! For all the above-mentioned reasons we
decided to study in detail the reactivity of [AsW,05;]°~ with
zirconium(I'V) and hafnium(IV).

Here we report on the two Zrs,- and Hfg-containing
tungstoarsenates(I111) [M;O,(OH),(H,0),(CH;COO)s-
(AsW,053),]"™ (M=Zr, 1; Hf, 2, see Figure 1), which have
been isolated as the hydrated mixed cesium-sodium salts
CseNas[ZrO4(OH),(H,0),(CH;CO0)s(AsW,05;),]-80 H,O
(CsNa-1)"  and  Cs¢Nas[Hf,0,(OH),(H,0),(CH;COO)s-
(AsW,05;),]-80H,0 (CsNa-2).®! These compounds were
characterized in the solid state by single-crystal X-ray dif-

Figure 1. Combined

polyhedral/ball-and-stick
[M4O,(OH),(H,0),(CH;CO0)s(AsW,0x),]'"~ (M=Zr, 1; Hf, 2). Color
code: WOq octahedra: dark red; Zi/Hf: green; As: gray; O: red; monop-
rotonated O: pink; diprotonated O: yellow; C: dark blue; H not shown.
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fraction, infrared spectroscopy, and thermogravimetric anal-
ysis.

Polyanions 1 and 2 consist of an unprecedented hexazirco-
nium and hexahafnium core, respectively, with the metal
ions occupying the vertices of an octahedron that is accom-
modated by two (B-a-AsW,0,;) fragments (see Figure S2 in
the Supporting Information). The Zr/Hf ions are octacoordi-
nated with a square-anti-prismatic geometry. The eight faces
of the Zr¢/Hf octahedron are capped by four p;-O and four
1;-OH bridges, each linking three zirconium/hafnium atoms
(see Figure 1). The two {AsW,} units in 1 and 2 are not
eclipsed, but rather lie at an angle of about 74° with respect
to each other, leaving a cavity perfectly suitable to host the
Mg unit. One of the vertices of the My octahedron is point-
ing exactly inside this cavity, while the opposite one is point-
ing away from the polyanion. The ‘equatorial plane’ formed
by the remaining four vertices serves as a kind of ‘ceiling’
for the cavity. The five ‘inner’ Zr/Hf atoms are directly
bound to the lacunary site of the {AsW,} fragments in the
expected fashion through two Zr/Hf—O—W bonds involving
corner-shared WO octahedra of the {AsW,} fragments. The
outer, unique Zr/Hf atom is bridged by three acetate groups
to three of the four Zr/Hf atoms in the equatorial plane of
the My octahedron. The unexpected absence of the fourth,
symmetry-related acetate group is due to a slight distortion
in the Mg assembly introduced by bonding to the first three
acetates. The outer, unique Zr/Hf is 3.56/3.54 A from its
non-acetate-bridged Zr/Hf neighbor, compared to a distance
of 3.48/3.46 A to the three equatorial, acetate-bridged Zr/Hf
neighbors. This feature is perfectly reproducible for both
polyanions 1 and 2, as seen by single-crystal X-ray diffrac-
tion. The absence of this fourth acetate lowers the point
group symmetry of the title polyanions from C,, to C,;. The
coordination sphere of the four equatorial Zr/Hf atoms is
completed by two additional acetate groups (see Figure 1).

Polyanions 1 and 2 are isostructural and the respective
salts CsNa-1 and CsNa-2 are in fact isomorphous. Notably,
polyanion 1 exhibits a very minor (ca. 3%) crystallographic
a-f-disorder. This means that in one of the two (AsW,Os;)
fragments one of the ‘lower’ (see Figure 1) edge-shared
W;0,; triads is rotated by 60° for 3% of the polyanions
present in the single crystal measured. On the other hand,
polyanion 2 is isomerically clean in the solid state.

We were also able to isolate polyanions 1 and 2 as tetra-
n-butyl ammonium salts [(n-C,H,),N],H,[Zr,O,(OH),-
(H,0),(CH;COO)5(AsW,053),] (TBA-1) and [(n-
C.Hy),N)]¢H;[Hf0,(OH)4(H,0),(CH;COO0)5(AsW,Os53), ]
(TBA-2) by addition of solid TBABr instead of the CsCl so-
lution mentioned in the above-described procedures fol-
lowed by filtration, washing with plenty of water, and drying
in an oven at 50 °C overnight.

Solution NMR spectra that can be correlated with the
polyanion structure in the solid state are considered compel-
ling evidence that the molecule is stable after redissolution.
Hence, the mixed cesium-sodium salt of 1 as well as the
tetra-n-butyl ammonium salt of 2 were dissolved in H,O/
D,O and MeCN, respectively, for multinuclear (**W, *C,
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"H) NMR studies at room temperature. For CsNa-1 we ob-
served five signals at 0 =—98.7, —101.6, —159.5, —186.9, and
—227.7ppm with relative intensities 2:2:2:2:1. Also for
TBA-2 we observed five signals at 6 =-73.0, —73.1, —106.9,
—162.6, and —201.5 ppm with the same intensity profile (the
lowest intensity peak is most upfield) (see Figure 2). These

”
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Figure 2. "W NMR spectra of CsNa-1 in H,0/D,O (bottom) and TBA-2
in MeCN (top).

results imply C,, symmetry for polyanions 1 and 2 in solu-
tion, which means that the three acetates mentioned above
are probably fluxional and/or the tungsten nuclei do not
sense the asymmetric bonding situation due to the five ace-
tate ligands. To try and verify these hypotheses we also mea-
sured 'H and *C NMR spectra of 1 and 2. We observed a
signal at 0=2.8 ppm in 'H NMR spectra and two signals at
0=24.1 and 182.1 ppm in the *C NMR spectra. These shifts
also correspond to free acetate, which might suggest that the
acetates attached to 1 and 2 are actually labile in solution
resulting in fast exchange with respect to the NMR time-
scale. Low-temperature NMR measurements could perhaps
verify this point.

We also performed homogeneous catalysis studies with
TBA-1 and TBA-2 on H,0, dismutation and the oxidation
of representative organic substrates with H,O, as oxidant
and MeCN as a solvent in which the TBA salts of 1 and 2
are completely soluble. In the absence of an organic sub-
strate, both polyanions caused intensive H,O, decomposi-
tion (see Figure 3), which is quite typical for Zr-POMs.?
The results of the catalytic oxidations are presented in
Table 1. With one equivalent of H,O, and 1 mol % of TBA-
1 or TBA-2, methyl phenyl sulfide (MPS) produced methyl
phenyl sulfoxide (MPSO) with 79-82% selectivity at 69—
74% substrate conversion, and sulfone (MPSO,) was the
only by-product. Interestingly, polyanion 2 was more active

Chem. Eur. J. 2010, 16, 11797 -11800
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Figure 3. Decomposition of H,0, with time in the presence and absence
of TBA-1 and TBA-2.

Table 1. Catalytic oxidations with 30% H,O, over TBA-1 and TBA-2 in
MeCN.

Substrate  Catalyst Conv. [%] Selectivity™ [%] TOF® [h™!]
CyH" epox diol ketol

TBA-1 60 43 30 11 33

TBA-2 51 27 35 18 36
Mpst MPSO MPSO,

TBA-1 74 82 17 286

TBA-2 69 79 20 876
CyHol! cyclohexanone

TBA-1 57 92 53

TBA-2 59 86 52

[a] GC yield based on substrate consumed. [b] TOF = (moles of substrate
consumed)/[(moles of POM) x time]; determined from the initial rates.
[c] Reaction conditions: CyH 0.2m, H,0, 0.2mM, POM 2x107°m, 50°C,
5h. [d]MPS 0.1m, H,0, 0.1M, POM 1x107m, 20°C, 0.5 h. [e] CyHol
0.1m, H,0, 0.4M, POM 4x107%m, 70°C, 1 h.

than 1 (TOF 876 and 286 h™', respectively). This could be
due to the different degree of protonation, which we have
shown previously to play an important role in catalysis for a
titanium-containing polyanion.’ Cyclohexanol (CyHol) re-
sulted mainly in cyclohexanone (86-92% selectivity at 57—
59% conversion), whereas cyclohexene (CyH) produced
predominantly epoxide, trans-1,2-cyclohexanediol, and 2-hy-
droxycyclohexanone (in total 80-84%) along with further
oxidation products, including adipaldehyde and adipic acid.
The epoxide to diol ratios were 1.4 and 0.8 for 1 and 2, re-
spectively; the yield of diol and its overoxidation products
was also higher for 2, most likely, due to the higher proton
content in this salt.®! Importantly, for both catalysts the
amount of the allylic oxidation products, 2-cyclohexene-1-ol
and 2-cyclohexene-1-one, did not exceed 5%. This is quite
unusual for cyclohexene oxidation over Zr catalysts, includ-
ing Zr-POMs,"2 and indicates a dominating heterolytic
oxidation mechanism.

In summary, the two novel polyanions [M,O,(OH),-
(H,0),(CH;CO0)5(AsWo0s;3),]"' ™ (M =Zr, 1; Hf, 2) contain
an unprecedented octahedral Zrs/Hfg assembly that is stabi-
lized by two (B-a-AsW,0Os;) groups and five bridging ace-
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tate ligands. Both compounds were characterized by several
techniques in the solid state. NMR studies in solution were
also conducted on 1 and 2 in H,0O/D,0 and MeCN solutions,
respectively. The spectra suggest C,, symmetry for the poly-
anions in solution, most likely due to fluxional behavior of
the labile acetate groups. The TBA salts of both 1 and 2 re-
vealed high catalytic activity and selectivity in the liquid-
phase oxidation of organic compounds with aqueous H,O,.
A heterolytic oxidation mechanism is manifested by the
high yields of epoxide and diol in the oxidation of cyclohex-
ene. We plan to perform additional mechanistic studies to
better understand the catalytic behavior of 1 and 2, and also
to prepare other carboxylate and perhaps also peroxo deriv-
atives of the title polyanions.

Experimental Section

Preparation of Cs¢Nas[Zr,0,(0H),(H,0),(CH;CO0);-
(AsWy033),]-80H,O (CsNa-1): Polyanion 1 was synthesized by dissolu-
tion of Nayg[a-AsW,0;;]-27H,0 (0.29 g, 0.10 mmol) in 2™ lithium acetate
buffer solution (20 mL, pH 4.0) followed by addition of ZrCl, (0.05 g,
0.20 mmol). The solution was heated at 80°C for one hour and filtered
while hot, and after the mixture had been cooled to room temperature a
few drops of 1M CsClI solution were added. Slow evaporation at room
temperature led to the appearance of colorless, crystalline CsNa-1 after
about one week, which was filtered off and air-dried (yield 0.11 g, 45 %).
IR bands: 7=1637 (m), 1617 (m), 1577 (s), 947 (s), 870 (vs), 783 (m), 728
(w), 691 (w), 642 (w), 457(m) cm ™.

Preparation of: Cs¢Na;[Hf,0,(OH),(H,0),(CH;COO)s-
(AsW,05;),]-80 H,0 (CsNa-2): For the preparation of 2 the same proce-
dure was followed as for polyanion 1 except that HfCl, (0.06 g,
0.20 mmol) was used instead of ZrCl, (yield 0.15 g, 55%). IR bands: 7=
1637 (m), 1617 (m), 1577 (m), 948 (m), 874 (s), 784 (m), 729 (w), 693 (W),
649 (w), 457(m) cm ™.

Preparation of [(n-CH,),N];H,[Zr,0,(OH),(H,0),(CH;COO);-
(AsWy033),] (TBA-1): The synthesis procedure for 1 was followed as
shown above, but instead of adding a few drops of 1M CsCl solution, an
excess amount of solid (n-C,H,),N)Cl (TBACI) was added. The resulting
white precipitate was isolated by filtration, washed with H,O, and then
dried in an oven at 50°C overnight. Elemental analysis (%) caled: C
20.28, H 3.89, N 1.36; found: C 19.75, H 3.90, N 1.35.

Preparation of [(n-CH,),N)]Hs[Hf,0,(OH),(H,0),(CH;COO0);-
(AsWy033),] (TBA-2): The same procedure was followed as for polyan-
ion 1. Elemental analysis (%) calcd: C 16.95, H 3.28, N 1.12; found: C
16.42, H 3.27, N 1.14. Elemental analyses were performed by Analytische
Laboratorien, Lindlar, Germany.

Catalytic oxidations: The catalytic oxidations were carried out in temper-
ature-controlled glass vessels at 20-70°C in MeCN solution (total reac-
tion volume 1 mL). Samples were taken during the reaction course by a
syringe, and the reaction products were identified by GC-MS and GC
using reference compounds. Substrate conversions and product yields
were quantified by GC using biphenyl or dodecane as internal standards.

NMR spectroscopy: The "W NMR spectrum of CsNa-1 redissolved in
H,0/D,0 was recorded at 16.656 MHz in a 10 mm tube at room temper-
ature on a 400 MHz JEOL ECP400H instrument. On the other hand, the
18W NMR spectrum of TBA-2 redissolved in CH;CN was recorded at
16.668 MHz in a 10 mm tube at room temperature on a Bruker Avance-
400 instrument.
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